B-math 2nd year Back paper Exam Subject : Analysis III

Time : 3.00 hours

Max.Marks 65.

1. Let S be a parametric surface described by the explicit formula z = f(x, y), where (x, y) varies over a plane region T, the projection of S in the xy plane. Let $\vec{F}(x, y, z) := P \vec{i} + Q \vec{j} + R \vec{k}$ where P, Q, R are functions on S and let \vec{n} be the unit normal to S having a non negative z component. Show that

$$\iint_{S} \vec{F} \cdot \vec{n} \, dA = \iint_{T} (-P\partial_x f - Q\partial_y + R) \, dxdy.$$
(10)

2. Let $\vec{F} := y^2 \vec{i} + xy \vec{j} + zx \vec{k}, (x, y, z) \in \mathbb{R}^3$. Let S be the surface in \mathbb{R}^3 (hemisphere) given by $x^2 + y^2 + z^2 = 1, z \ge 0$. Evaluate $\iint_S \vec{F} \cdot \vec{n} \, dA$. (10)

3. Show that the moment of inertia of a homogenous thin spherical shell S about a diameter is equal to $\frac{2}{3}ma^2$, where m is the mass of the shell and a is its radius. Recall that the moment of inertial I_L of an object about a line L is $I_L := \iint_S \delta(x, y, z)^2 f(x, y, z) \, dA$ where $\delta(x, y, z)$ is the distance of the point (x, y, z) from the line L and f(x, y, z) is the density at (x, y, z). (10)

4. a) Let $\{f_n\}$ be a sequence of continuous functions on [0, 1] such that $f_n \to f$ uniformly on (0, 1). Show that f is uniformly continuous on (0, 1).

b) Let $f_n(x) := \frac{\sin(nx)}{n} \ x \in [0, 1]$. Show that $\lim_{n \to \infty} \int_0^1 f_n(x) dx = 0$.

c) Answer the same question as in b) for the sequence $f_n(x) := \frac{1}{nx+1} x \in [0, 1]$. (5+5+5)

5. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$, $f(x, y) := (x^2 - y^2, 2xy)$. a) Show that f is one to one on $A := \{(x, y) : x > 0, y \in \mathbb{R}\}$. b) Describe the set f(A). c) Find $D(f^{-1})(0, 1)$. (10)

6. Let $Q \subset \mathbb{R}^2$ be a rectangle. Let $f : Q \to \mathbb{R}$, be bounded and continuous. Show that f is Reimann integrable on Q. (10)